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■ Abstract In the search to identify factors that make some plant species trou-
blesome invaders, many studies have compared various measures of native and alien
invasive plant performance. These comparative studies provide insights into the more
general question “Do alien invasive plants usually outperform co-occurring native
species, and to what degree does the answer depend on growing conditions?” Based on
79 independent native-invasive plant comparisons, the alien invaders were not statisti-
cally more likely to have higher growth rates, competitive ability, or fecundity. Rather,
the relative performance of invaders and co-occurring natives often depended on grow-
ing conditions. In 94% of 55 comparisons involving more than one growing condition,
the native’s performance was equal or superior to that of the invader, at least for some
key performance measures in some growing conditions. Most commonly, these con-
ditions involved reduced resources (nutrients, light, water) and/or specific disturbance
regimes. Independently of growing conditions, invaders were more likely to have higher
leaf area and lower tissue construction costs (advantageous under high light and nutrient
conditions) and greater phenotypic plasticity (particularly advantageous in disturbed
environments where conditions are in frequent flux). There appear to be few “super in-
vaders” that have universal performance advantages over co-occurring natives; rather,
increased resource availability and altered disturbance regimes associated with hu-
man activities often differentially increase the performance of invaders over that of
natives.

INTRODUCTION

Invasive plants are nonnative species that have successfully spread outside their na-
tive range (Richardson et al. 2000, Williamson 1996). Most invasions over the past
several centuries have involved species transported directly or indirectly by humans
(McKinney & Lockwood 1999, Pyˇsek et al. 2002). Invasive plants have attracted
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much attention because of their economic costs as weeds (Pimentel 2002) and
because they may reduce native biodiversity (Daehler & Strong 1994, Wilcove et al.
1998) or alter ecosystem functions (D’Antonio & Vitousek 1992, Vitousek 1990).
Because only a small fraction of introduced species become invasive (Williamson
1996), and many invasive species can be considered pests (Daehler 2001), much
effort has been focused on understanding what makes some species invasive (Kolar
& Lodge 2001, Rejm´anek et al. 2003).

A comparative approach has often been useful in helping to understand what
makes invasive species so successful (Grotkopp et al. 2002, Mack 1996, Rejm´anek
1995). The comparative approach involves pairing invasive species with native
species or noninvasive congeners. If a consistent difference can be identified
between invader and native, that difference might help explain why an invader
has become so successful. Rather than summarizing attributes that might make
a species invasive (e.g., Crawley et al. 1996, Pyˇsek et al. 1995, Williamson &
Fitter 1996), this review makes use of published native-invader comparisons to ex-
amine the general question “Do invasive plants perform substantially better than
co-occurring native plants?” When I refer to “plant performance,” I mean a plant’s
success or aptitude in terms of one or more fitness-related traits. An invader that
outperforms co-occurring natives is expected to increase in relative abundance
over time, and abundant invaders are expected to have significant impacts on co-
occurring native populations (Daehler & Carino 1999). Plant performance can
be measured by various traits ranging from competitive ability to fecundity. In
any case, whether or not invasive plants substantially outperform co-occurring
natives has important consequences for conservation. If most invasive plants sub-
stantially and consistently outperform co-occurring natives, then we can expect
serious and widespread reductions in global biodiversity as a direct consequence
of today’s plant invasions; we would be left with few options for preventing this,
other than persistent and direct attacks on the invaders. On the other hand, if in-
vaders rarely outperform co-occurring natives, or if their superior performance
compared with natives is marginal or dependent on specific environmental condi-
tions, then the possibility remains that the impact of invaders will be strong only
under particular environmental circumstances, and these circumstances could be
minimized.

Whereas “extreme” environments have often been suggested to be highly resis-
tant to invasion (e.g., Rejm´anek 1989, Mueller-Dombois & Loope 1990), Alpert
et al. (2000) proposed a specific mechanism that is applicable to a continuum of
environmental conditions: The relative performance of native and invasive species
could vary depending on the amount of environmental stress. Other environmental
variables such as disturbance regime could also differentially increase the per-
formance of native plants relative to co-occurring invaders (Alpert et al. 2000,
Hobbs & Huenneke 1992, Mueller-Dombois & Loope 1990). Under these circum-
stances, land managers could potentially manipulate environmental conditions
to thwart invasions or reduce the abundance of unwanted invaders to acceptable
levels. Thompson et al. (1995) concluded that at least some native species have

A
nn

u.
 R

ev
. E

co
l. 

E
vo

l. 
Sy

st
. 2

00
3.

34
:1

83
-2

11
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 U

.S
. D

ep
ar

tm
en

t o
f 

A
gr

ic
ul

tu
re

 o
n 

12
/1

4/
06

. F
or

 p
er

so
na

l u
se

 o
nl

y.



17 Oct 2003 16:8 AR AR200-ES34-08.tex AR200-ES34-08.sgm LaTeX2e(2002/01/18)P1: GCE

NATIVE-INVASIVE PLANT PERFORMANCE 185

the same attributes as invasive species, but they made no attempt to compare
the performance of native and invasive plants co-occurring in the same habi-
tats. This review summarizes studies of performance differences between co-
occurring native and invasive plants and uses the compiled findings to suggest
general strategies for managing invasive plants. Comparisons were not restricted
to taxonomically related species pairs; however, in all of the reviewed studies, the
invaders and co-occurring natives had the same life form, and/or the study au-
thors had raised concerns that the invader was directly impacting the co-occurring
native.

LITERATURE SEARCH FOR PERFORMANCE
COMPARISONS

In order to identify a large sample of studies comparing the performance of na-
tive and invasive plants, I searched Biological Abstracts (SilverPlatter Information
Inc, Norwood, MA) for the publication years 1985–June 2002. The following
search was performed for words within the entire database record, including the
Abstract: Nativeand (Invasiveor Invad∗ or Exotic or Alien) and (Subject=
plant or plants). For all citations identified using this search filter, the titles and
abstracts were read to identify relevant studies. A few additional studies were
identified through citations within papers found during the initial search. A num-
ber of studies (e.g., Gould & Gorchov 2000, Melgoza et al. 1990) examined
the effect of an invader on a native plant but did not provide comparable data
on how the native affected the invader; such studies could not be used for the
comparative purpose of this review. Some studies compared large groups of in-
vaders and natives (e.g., Crawley et al. 1996, Goodwin et al. 1999, Pyˇsek et al.
1995), but these studies were not included in this review because they mainly com-
pared general life history traits or biogeographic characteristics, rather than plant
performance.

For studies containing appropriate comparative data on one or more native-
invasive species pairs, the measure of performance was recorded, and the native’s
performance was rated as inferior to, equal to, (no statistical difference), or better
than that of the invader. In many cases, performance had been measured under
more than one condition. If the relative performance of the native depended on
the conditions, then the specific conditions under which the native’s performance
was superior or equal to that of the invader were recorded. Usually, performance
assessments (inferior, superior, or equal) were based on the statistical analyses
given in the original papers. However, in some cases the authors did not clearly
present the statistical comparison for a specific time or condition. In such cases,
overlapping standard error bars in graphs were conservatively taken to indicate
nonsignificant differences in performance. In some studies, performance data were
given for several native and invasive species. Unless the natives were clearly paired
with invaders, performance results were recorded using the following rules: If
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one native was superior to all invaders, then the study was recorded as finding
superior performance of a native; if there was no clear pattern (some natives
equal to invaders), then the study was recorded as finding equal performance
between natives and invaders; if the invaders as a group clearly outperformed the
natives as a group, then the study was recorded as finding inferior performance by
natives.

A total of 119 published papers containing comparative performance data were
identified. Among these, some involved the same species pairs; results from these
studies were pooled to create a single summary comparison of that species pair.
For four invaders (Acacia saligna, Centaurea maculosa, Lythrum salicaria, and
Tamarix ramosissima), independent studies compared these invaders to differ-
ent native species at different locations or times. These cases were considered
separate comparisons for purposes of generating summary statistics. Summary
statistics on performance results are based on tallies rather than meta-analysis be-
cause there was no satisfactory way of weighing context-dependent differences
in performance identified within native-invader species pairs. The total number
of paired, independent comparisons between native and invasive plants was 79
(Appendix 1, see the Supplemental Material link in the online version of this
chapter or at http://www.annualreviews.org/); 13 pairs consisted of congeners and
59 (75%) of the paired comparisons involved data obtained from manipulative ex-
periments. The comparisons included studies from all major geographic regions of
the world. North America was the most common geographic region for the native
species (46% of comparisons). Asia was underrepresented, with only one study
where the native was from Asia (Yamashita et al. 2000). In contrast, Asia and/or
Europe (Eurasia) was the origin for over half (54%) of the invaders. The com-
parisons involved various plant life forms, distributed as follows: 32% grasses,
23% other herbs including vines, 25% shrubs, and 20% trees. Separate analy-
ses by geographic region or life form were not attempted owing to small sample
sizes.

PERFORMANCE COMPARISONS

Measures of Performance

The most common measure of performance was growth rate (Figure 1), probably
because it is simple and inexpensive to measure in pot and field experiments. Other
common measures of performance can be grouped into those related to individual
growth rate, at least in theory (e.g., photosynthesis, tissue construction costs, total
leaf area) and those related to population spread (e.g., fecundity, dispersal rate,
germination rate, survival). Finally, some common measures of performance were
not easily placed in either category: competitive ability, standing biomass, and
phenotypic plasticity. Specific examples of comparisons involving each of these
performance measures are detailed below. Less frequently encountered compar-
isons of performance between native and invasive plants (n< 5 studies) were seed
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Figure 1 Performance comparisons between native and invasive plants, by frequency
of occurrence. Only performance measures for which five or more comparisons were
encountered are shown. The total number of comparisons exceeds the total number of
studies reviewed because some studies measured multiple aspects of performance.

predation rates, seed longevity, rate of pathogen attack, allelopathic capacity, and
environmental breadth.

Context-Dependence of Performance

Among the 79 independent performance comparisons between native and invasive
plants, only 10 comparisons (13%) showed consistent performance advantages for
the invader for all measured performance variables across all growing conditions
(Figure 2). When one considers only the 55 comparisons that involved more than
one growing condition, invaders had universally superior performance in only 6%
of cases. The most common growing conditions favoring natives over invaders were
environments with low resource availability (nutrients, water, or light; Figure 2).
Some studies identified a specific disturbance regime, such as periodic flooding
(Sher et al. 2000), mowing, or fire that favored the native over the invader (pooled
as “special disturb” in Figure 2). On several occasions (e.g., Holmgren et al.
2000), removal of introduced grazers favored the native. Certain invaders consis-
tently had poor performance when directly competing with natives. Presumably,
these invaders have become abundant because frequent disturbances reduce the
intensity of competition with natives (e.g.,Bunias orientalis; Dietz et al. 1998).
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Figure 2 Conditions under which the native’s performance was equal to or better
than that of the invader. Only conditions favoring natives in three or more independent
comparisons are shown. Percentages are based upon the total number of studies that
manipulated each condition (given above each bar).

Specific examples of context-dependent performance are detailed in the summaries
of individual performance measures below.

Growth-Rate–Related Traits

Invasive plants are often characterized as having unusually rapid individual growth
rates, allowing them to outgrow, overgrow, or quickly crowd out natives (Cronk &
Fuller 1995). Certainly, examples like “mile-a-minute weed” (Polygonum perfolia-
tum) support the idea that invaders can have very rapid growth rates (Oliver 1996).
Nevertheless, among the reviewed comparisons, there was no clear evidence that
invaders necessarily grow faster than co-occurring natives (Figure 3). Instead, the
more rapid growth rate of invaders appears to be condition- or context-dependent. A
study was far more likely to conclude that invaders had a universal growth-rate ad-
vantage if the study examined only one growing condition. Among 14 growth-rate
studies conducted under only one growing condition, none showed a growth-rate
advantage for the native. In contrast, among the 12 comparisons where a growth-
rate advantage of the native was observed (Figure 3), all were conducted under
more than one growing condition or environment. For example, the growth rate of
native plains poplar (Populus deltoides) exceeded that of the invasive Russian olive
(Elaeagnus angustifolia) when plants were grown with a high water table, whereas
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Figure 3 Summary of native versus invader performance, according to whether the
native performed better than (first column) or as well as (second column) the invader
under some conditions, or whether the invader always performed better (third column).
Asterisk indicates significant difference (chi-squared exact test, exactP< 0.05). The
column to the far right (n) indicates the number of independent comparisons for each
measure of performance.
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conclusions were different when the table was lower (Shafroth et al. 1995). Un-
der conditions of reduced salinity, the growth rate of native willows (Salixspp.)
equaled or exceeded that of invasive salt cedar (Tamarix ramosissima), a trou-
blesome riverside invader in controlled river courses in the southwestern United
States (Cleverly et al. 1997, Glenn et al. 1998). Reduced salinity would be expected
along these river courses if the natural flood regime were restored in these areas.
In salt marshes of the western United States, higher salinity favored the growth of
native pickleweed (Salicornia subterminalis) over the invasive European annual
beardgrass (Polypogon monspeliensis) (Kuhn & Zedler 1997). In the northwestern
United States, the native perennial grassFestuca idahoensishad a growth advan-
tage over invasive European grasses under lower water conditions, particularly
with less winter rain (Borman et al. 1990). In Europe, nativeCystoseira nodicaulis
(a macroalga) had a substantial autumn and winter growth advantage over eco-
logically similarSargassum muticumintroduced from Asia (Arenas et al. 1995).
These examples illustrate the importance of making comparisons over different
times and under different growing conditions, and the findings from these studies
suggest site-specific management strategies for promoting the growth of natives
over the growth of invaders.

Similar cases of context-dependent performance were observed for photo-
synthetic capacity and root growth. Under dry conditions, a native Venezuelan
bunchgrass,Trachypogon plumosus, had higher photosynthetic rates than invasive
African molasses grass (Melinis minutiflora) (Baruch 1996). The native Califor-
nia dune grassElymus mollishad higher rates of photosynthesis in the field than
the invasive European dune grass,Ammophila arenaria(Pavlik 1983a). The same
study observed higher photosynthetic rates for the invader in the laboratory, again
pointing out the context-dependence of performance. Pattison et al. (1998) re-
ported higher photosynthetic rates among forest invaders when they evaluated
several native-invasive species pairs in the Hawaiian Islands. They concluded that
“the invasive species appear to be better suited than native (Hawaiian) species to
capturing and utilizing light, particularly in high light environments such as those
characterized by relatively high levels of disturbance” (Pattison et al. 1998). As the
latter statement implies, the invaders’ advantage was substantially less or nonexis-
tent under lower light condition (as would be more typical of an undisturbed forest
environment). It should also be noted that Pattison et al. (1998) grew all plants in
a nutrient-enriched commercial potting medium. It would be interesting to know
how photosynthetic rates would compare between invaders and natives growing in
a nutrient-poor environment, more similar to soil conditions in most undisturbed
Hawaiian rainforest.

Not many studies specifically examined root growth, but among the available
studies, there was no consensus advantage for invaders (Figure 3). In New Zealand,
the native grassFestuca novae-zelandiaehad root growth advantages over invasive
hawkweeds (Hieraciumspp.) in certain low-fertility soils (Fan & Harris 1996).
Marler et al. (1999) found no difference in fine-root densities of invasive spotted
knapweed (Centaurea maculosa) and the native bluebunch wheatgrass (Agropyron
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spicatum) when averaged across depths. The invader tended to have deeper roots
but the native had denser fine roots at shallower depths. Either rooting strategy
could be advantageous, depending on environmental conditions. In comparing
invasive ice plant (Carpobrotus edulis) with nativeHaplopappusspp., D’Antonio
& Mahall (1991) observed the opposite rooting pattern: The invader had denser
fine roots near the surface, whereas the natives had deeper roots.

For total leaf area and tissue construction costs, there was a statistically signif-
icant trend toward invaders having higher leaf area and lower construction costs
than natives (Figure 3). Invaders tended to have greater leaf area, whether measured
as absolute area or leaf area ratio (leaf area per total plant mass) and when com-
bined with lower constructions costs (Baruch & Goldstein 1999), this increased
area might be expected to give the invaders a growth advantage. The number of
studies examining construction costs remains small, and further studies would be
useful to determine if a statistical trend toward lower construction costs among
invaders is generalizable. One recent study on invasive purple loosestrife (Lythrum
salicaria) found that the invader did not have lower construction costs relative to
some ecologically similar native species in North America (Nagel & Griffin 2001).
Furthermore, although low tissue construction costs and higher leaf area might ap-
pear to provide a universal growth-rate advantage (but see Poorter & Bergkotte
1992), there are likely to be trade-offs in the form of reduced leaf longevity (Reich
et al. 1997). Native plants with lower leaf area ratio and higher construction costs
are likely to have longer leaf life spans, which can result in comparable overall
above-ground production efficiency per unit foliar biomass, compared with (inva-
sive) plants with larger leaf area ratios and lower construction costs (Reich et al.
1992). In low-nitrogen environments, having a longer leaf life span (with the cost
of slower growth) may actually be superior in the long run because plants with
longer tissue life spans are more efficient at holding scarce nutrients (Aerts & van
der Pejil 1993). If a native plant community is adapted to low-nutrient conditions,
then increased nutrient levels are likely to promote the success of invaders adapted
to take advantage of these high nutrient levels. Experiments have demonstrated
increased success of invaders following nutrient additions alone (Huenneke et al.
1990), although more often nutrient additions interact with physical disturbance
to promote invasion (Burke & Grime 1996, Duggin & Gentle 1998, Li & Norland
2001, Weiss 1999). Human-related eutrophication and physical disturbance of the
environment can probably explain the success of many invaders (e.g., Allan 1936,
D’Antonio et al. 1999, Hobbs & Huenneke 1992).

Competition

Competitive ability or performance can be measured in various ways (Goldberg
& Landa 1991). Most of the reviewed studies pitted invaders against ecologically
comparable, similar-sized native species. Conclusions about competitive perfor-
mance were generally based on the final biomass of the invader relative to the native
species when grown in competition. As with most other fitness-related traits, the
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relative competitive performance of native versus invasive species often depended
on environmental conditions. Among the 16 studies that experimentally assessed
competitive performance, only five (31%) seemed to show universally superior
competitive performance by the invader. These five invaders wereBromus iner-
mis (Nernberg & Dale 1997),Dipsacus sylvestris(Huenneke & Thomson 1995),
Lythrum salicaria(Mal et al. 1997)Pennisetum setaceum(Carino & Daehler 2002),
andSpartina alterniflora(Callaway & Josselyn 1992). For one of these species
(Dipsacus), the situation was not clear. This invader seemed to outcompete the
native in a greenhouse study, but an accompanying field study was inconclusive
(Huenneke & Thomson 1995). The case ofLythrumalso requires a caveat; the na-
tive (Typha angustifolia) was clearly the superior competitor in the first year, but by
the end of the experiment (fourth year),Lythrumappeared to have the competitive
advantage (Mal et al. 1997).

Among the remaining 11 comparisons of competitive performance, the native
was equivalent or superior to the invader, at least under certain growing conditions.
In South Africa, the native woody legumeVirgilia orboideshad superior perfor-
mance when grown in competition with ecologically similar Australian invaders
(Acacia longifoliaandAlbizia lophantha) under both high- and low-nutrient condi-
tions (McDowell & Moll 1981). In several comparisons, competitive performance
depended on nutrient availability. Under high- and moderate-nutrient conditions,
invasiveAcacia salignasignificantly outperformed nativeProtea repens, but when
the two were grown together in competition under low-nutrient conditions (native
Clovelly soil with acid-washed sand), the performance of the native was compara-
ble to that of the invader (Witkowski 1991). Likewise, when the California native
grassElymus glaucuswas grown in competition with the European invaderBromus
mollis, the invader performed better at high soil nitrogen levels, but the outcome
was reversed under lower-nitrogen conditions (Claassen & Marler 1998). Similar
results were obtained in a comparison of competitive ability between invasive spot-
ted knapweed (Centaurea maculosa) and the native perennial grassPseudoroeg-
neria(Agropyron) spicatum(Herron et al. 2001). In New Zealand, the native grass
Festuca novae-zelandiaeappeared able to suppress an invasive herb (Hieracium
pilosella) in low-fertility soils if a single clipping treatment was applied, but the
native was less successful under higher-nutrient conditions (Fan & Harris 1996). In
a study of competitive hierarchies among 20 wetland plants in three environments,
Keddy et al. (1994) concluded that invasive purple loosestrife (Lythrum salicaria)
had strong competitive effects on the phytometer species across all environments;
however, it is interesting to note that the phytometer species had strong effects on
purple loosestrife in the low-nutrient environment, reducing its biomass by nearly
50%. About half of the native species tested showed lesser reductions in biomass
in the low-nutrient environment (Keddy et al. 1994), indicating that many natives
tolerated competition better than purple loosestrife did under low-nutrient con-
ditions. Whereas low-nutrient conditions often increased the relative competitive
performance of natives, no native species had an increased competitive advantage
under high-nutrient conditions.
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Another example of an environmental condition that increased the relative com-
petitive performance of a native species was decreased water availability (Smith &
Brock 1996). A performance advantage for natives under reduced water conditions
was also observed in several other species pairs and for other performance mea-
sures (Figure 2). Mesleard et al. (1993) observed superior competitive ability of a
native halophytic grass,Aeluropus littoralis, over invasivePaspalum paspalodes
under conditions of increased soil salinity. This pattern has also been reported for
other native halophytes in competition with invaders (Kuhn & Zedler 1997, Zedler
et al. 1990).

Standing Biomass/Cover Abundance

Several field-based studies measured changes or differences in standing biomass/
cover of native versus invasive species under different environmental conditions
(Figure 3). Such changes are probably due to a combination of factors, includ-
ing competition. Working in upland prairies of the western United States, Wilson
& Clark (2001) found that a specific mowing regime reduced cover of the inva-
sive Eurasian grassArrhenatherum elatiuswhile increasing cover of native prairie
grasses. In the Chillean matorral, Holmgren et al. (2000) observed increased cover
of native species, particularly the native grassBromus berterianus, in plots that
had been fenced to keep out alien grazers. Stromberg & Griffin (1996) analyzed
the vegetation of California grasslands and found that native grasses remained
dominant or codominant on lands that had not been historically cultivated. Culti-
vation presumably altered soil texture and nutrients, favoring invasion by Eurasian
grasses. Furthermore, current high levels of gopher disturbance, even on lands no
longer in cultivation, seem to favor dominance by the alien grasses (Stromberg &
Griffin 1996). Other studies involving seed additions of either natives or aliens (but
not both) followed by environmental manipulations (e.g., Hobbs & Atkins 1988)
have likewise identified conditions favoring increased cover/biomass of natives,
but these studies are not considered here because their differential treatment of
natives and invaders precluded direct performance comparisons.

Four studies in the standing biomass category (Figure 3) tested whether invasive
species tend to attain higher biomass/productivity than ecologically similar native
species. Two of these studies found that the invader attained higher biomass than
an ecologically similar native (Pavlik 1983b, Callaway & Josselyn 1992), while
the other two studies found no difference in standing biomass between invader and
native (Horn & Prach 1994, Smith & Knapp 2001a).

Reproduction and Spread-Related Traits

Some studies examining reproductive ecology have identified spectacular advan-
tages for the invader. For example, invasive smooth cordgrass (Spartina alterni-
flora) in San Francisco Bay had a sevenfold advantage in seed production over
native California cordgrass (Spartina foliosa), and the germination rate was also
higher for the invader (Callaway & Josselyn 1992). Similarly, in the South African
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fynbos, introducedBanksia ericifoliahad twofold higher seed production per
canopy area compared with nativeLeucadendron laureolum(Honig et al. 1992).
The alien also had advantages in germination speed and germination rate (Honig
et al. 1992). Despite examples like these, other studies found no clear advantage
for the invader. For example, in a glacier foreland, nativePoa kerguelensispro-
duced nearly three times more seeds per plant than invasivePoa annua; percent
germination of seeds was similar (80–90%) for both species (Frenot & Gloaguen
1994). The native required a cold pretreatment for germination, but this would not
seem to be a disadvantage in a glacial environment. Among 31 comparisons of
fecundity and/or germination, the invader had a consistent reproductive advantage
in only 14 (45%) of the cases (Figure 3). In the remainder of cases examining
fecundity and/or germination, either the invader did not have a clear reproductive
advantage (as inPoa annuaversusPoa kerguelensis), or the invader’s advantage
was context-dependent. For example, although invasive fountain grass (Pennise-
tum setaceum) in Hawai’i had higher seed production per plant than native pili
grass (Heteropogon contortus) under higher water conditions, the native had the
fecundity advantage under drought conditions (Goergen & Daehler 2001b). Like-
wise, under conditions of low water availability, invasive fountain grass had lower
seedling survival compared with the native grass (Goergen & Daehler 2002). An
analogous situation was reported from Australia: over 80% of individuals of the
native grassDanthonia richardsoniiflowered and produced seeds under dry field
conditions. In comparison, among three co-occurring alien grasses fewer than
5% of individuals flowered under these conditions (Virgona & Bowcher 2000).
Survival of the native was also higher in the low water environment (Virgona &
Bowcher 2000).

In some cases, fire seemed to give natives a reproductive advantage. Seeds of
a native Australian grass (Austrostipa compressa) had higher germination rates
than an invasive African grass (Ehrharta calycina) after exposure to high heat
(Smith et al. 1999). The native also had higher densities of germinable seeds in
the field after fire (Smith et al. 1999), although germinable seed densities were
not compared in unburned areas. Similarly, in Hawai’i, fire caused high seed (and
adult) mortality in invasive natal redtop (Melinis repens), resulting in low seedling
recruitment and cover abundance after fire, compared with the co-occurring fire-
tolerant native grassHeteropogon contortus(Tunison et al. 1994).

Although most comparisons of fecundity were based on seed production,
Aptekar & Rejmánek (2000) compared potential for vegetative reproduction be-
tween American beach grass (Leymus mollis) and the invasive European beach
grass (Ammophila arenaria) on U.S. Pacific coasts. They found that the native
produced significantly more nodes (potential propagules) per rhizome length than
the invader. Rhizome fragments of the native also remained viable in seawater for
a longer time (Aptekar & Rejm´anek 2000), suggesting a dispersal advantage for
the native.

Overall, there was a trend toward a seed dispersal advantage for invaders
(P = 0.06, Figure 3), but statistical power was limited by the small number
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of studies. Richardson et al. (1987) concluded that the winged, wind-dispersed
seeds of introduced Protaceae (Hakeaspp.) have a dispersal distance advantage
over native South African Protaceae, which are often gravity or ant-dispersed.
Also in South Africa, introducedBanksia ericifoliawas found to have lighter
seeds with larger wings compared with nativeLeucadendron laureolum, provid-
ing the alien with a dispersal distance advantage (Honig et al. 1992). In Califor-
nia, scats of jackrabbit and deer contained more seeds of invasiveCarpobrotus
edulis than seeds of the presumed nativeC. chilensis, implying a dispersal ad-
vantage for the invader (Vila & D’Antonio 1998a). Rejm´anek (1996) has pro-
posed that the presence of an efficient bird-disperser may be a key predictor of
invasion success among fleshy-fruited plant species, so it is surprising that few
studies have compared bird dispersal preferences between native and invasive
plants. In a subtropical forest, Montaldo (2000) examined fruit removal rates by
birds for two invasive plants (Rubus ulmifoliusandLigustrum lucidum) and three
native plants. There was no clear difference in fruit removal rate between in-
vaders and natives, but the invaders had higher fecundity. Similar findings were
reported in a comparison of invasive Oriental bittersweet (Celastrus orbicula-
tus) and native holly (Ilex opaca) in a North American temperate forest; fruit
removal rates did not differ significantly between the native and invader, although
there was a trend toward a higher removal rate for the native (Greenberg et al.
2001). In contrast, fruits of the invasive European hawthorn (Crataegus mono-
gyna) were more attractive to American robins than fruits of a native American
hawthorn (C. douglasii) (Sallabanks 1993). This study was particularly interesting
because it showed preference by native birds for fruits of an invasive plant, but
so far this situation appears to be the exception rather than the rule (Montaldo
2000).

Among the reproduction and spread-related traits, there was one statistically
significant trend: natives tended to have a survival advantage over invaders at
some life stage, under at least some environmental conditions (Figure 3). Some of
these cases have already been mentioned (e.g., higher relative survival of native
Populus, Heteropogon, andDanthoniaas well asLeymusrhizomes under specific
environmental conditions). In Argentinean montane forests, a native tree,Lithraea
ternifolia, was estimated to have higher seedling and juvenile survival at sites
with shallow, rocky soils, compared with an invasive North American competitor,
Gleditsia triacanthos(Marco & Paez 2000). In New Zealand, although the native
vineParsonsia heterophyllahad a slow growth rate, it was capable of surviving at
lower light levels compared with invasive vines (Baars & Kelly 1996). In wood-
lands of Ireland, reduced grazing pressure would likely result in higher seedling
and juvenile survival of the native understory shrubIlex aquifoliumcompared with
invasiveRhododendron ponticum, particularly on sites with an accumulation of
leaf litter (Cross 1981). Vila & D’Antonio (1998b) reported a survival advantage
for the invader,Carpobrotus edulis, over nativeC. chilensisin one environment,
but not in another environment. It is surprising that so few demographic studies
have compared the survival of native and invasive plants across life stages and
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environments (e.g., Marco & Paez 2000) as such studies can provide clear insights
into management strategies that could differentially promote natives.

Phenotypic Plasticity

Among 12 comparisons of phenotypic plasticity, most concluded that the invader
was more plastic than the native (Figure 3). Most observations of greater phenotypic
plasticity in invaders involved changes in biomass allocation patterns in response to
different environmental conditions (Baruch & Bilbao 1999, Black et al. 1994, Fan
& Harris 1996, Luken et al. 1997, Maillet & Lopez 2000, Simoes & Baruch 1991,
Yamashita et al. 2000). Other studies reported greater plasticity for the invader in
terms of physiological responses (Pattison et al. 1998, Williams & Black 1994),
circumnutation (Larson 2000), or germination in response to temperature (Frenot
& Gloaguen 1994). It seems that invaders often do have higher phenotypic plastic-
ity than natives, and this plasticity probably allows invaders to succeed in a wider
range of environments, but it does not a priori indicate a performance advantage
over natives within any single, defined environment. Furthermore, natives probably
often have higher genetic variation in comparison with co-occurring invader popu-
lations that were established from a small group of founders. It would be interesting
to know if the range of phenotypes expressed in an invading population exceeds
the range of phenotypes expressed in a native population, since it is this total phe-
notype range (genetic and plastic) that determines a species’ ability to respond to
environmental changes over time or space. Kitayama & Mueller-Dombois (1995)
found that native species generally had greater overall environmental breadth com-
pared with invaders, and this wide breadth was related to high genetic variation
within the natives (Kitayama et al. 1997, Daehler et al. 1999).

Effects of Natural Enemies

If an invader is significantly affected by natural enemies in its native range, then
release from natural enemies could give it a fitness advantage in its introduced
range. Nine studies were found comparing the effects of herbivory on native and
invasive species. In six of these cases, herbivores had a larger impact on the native
plants (Figure 3). One of these cases involved introduced grazers (Caldwell et al.
1981) and four involved cases where native vertebrate herbivores likely occurred at
unusually high abundances owing to human elimination of their natural predators
(Cross 1981, Lesica & Miles 1999, Pyke 1986, Schierenbeck et al. 1994). The one
remaining study was largely anecdotal, reporting “heavy nocturnal leaf feeding by
crickets” on a native species; the invasive species were “unaffected” by crickets
(McDowell & Moll 1981). One of the nine herbivory comparisons found no con-
sistent differences in level of herbivory on native and exotic eucalypts in Australia
(Radho et al. 2001). Two studies (22%) found greater herbivore damage on the
invasive species than on the native, but in both cases the herbivore was introduced
(Bellingham 1998, Gross et al. 2001). Keane & Crawley (2002) summarized eight
additional studies examining herbivory on native and invasive plants; five of these
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showed greater damage among native plants. Based on the studies to date, we can-
not generally assume that native plants are more heavily damaged by herbivores
than invaders. Successful biocontrol efforts cannot be used as evidence that an
invader’s advantage was due to release from herbivory because biocontrol agents
themselves have been released from their natural predators, pathogens and com-
petitors (Keane & Crawley 2002). There also appears to be no general trend toward
greater seed predation rates for natives versus invaders (Blaney & Kotanen 2001b),
although individual exceptions have been reported (e.g., Richardson et al. 1987).
Likewise, there appears to be no general trend toward greater rates of attack by
fungal pathogens among native species than among invaders (Blaney & Kotanen
2001a), although again, exceptions are known (e.g., Goergen & Daehler 2001a).
Interestingly, Mitchell & Power (2003) found that native plants had greater abso-
lute numbers of pathogens than invasive pest plants, but unlike Blaney & Kotanen
(2001a), they did not make comparisons for co-occurring species and no estimates
of pathogen damage were available.

General Conclusions from Performance Comparisons

In the majority of reviewed cases, native plants were equivalent to or had per-
formance advantages over invasive plants under at least some growing conditions
(Figure 2). Because the published literature on invasive species is likely to be bi-
ased toward studies of the most troublesome invasive pests (Simberloff 1981), it
seems safe to conclude that invaders with universal performance advantages over
ecologically comparable native species (i.e., super invaders) are quite rare, even
among aggressive invaders (Rosenzweig 2001). Trade-offs in physiology and life
history (Sinervo & Svensson 1998) are likely important in constraining invaders,
but the rare “super invaders” may circumvent some trade-offs (Holway 1999).
Assuming sufficient habitat heterogeneity, the performance data imply that most
native species should be able to maintain natural populations even as invading
plants spread, but the native populations might persist within a narrower range
of environmental conditions (narrower realized niche) than before the invaders
arrived. Conditions where invaders had the largest performance advantage (high
resource availability, high physical disturbance, or departures from the natural
disturbance regime; Figure 2) are generally associated with human activities.

STRATEGIES FOR MAXIMIZING PERFORMANCE
BY NATIVES

Preserve “Intact” Natural Systems

Preserving “intact” natural systems is an obvious priority for many conserva-
tion biologists. From the perspective of invasion biology, natural areas that have
experienced minimal human disturbance have long been noted to be less invaded
than areas that have been directly disturbed by humans (Allan 1936, Rejm´anek
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1989). Although this pattern may be partly explained by fewer alien propagules
having been introduced to intact natural systems, the studies reviewed here also
suggest that the relative performance of most invaders would be reduced in many
intact natural systems where key resources are likely to be scarce. Such systems
may generally favor the survival, growth, or recruitment of natives. Physical pro-
tection of representative samples of intact natural systems also can provide us
with invaluable reference information about conditions that are likely to favor
local native species over most invaders. Key data that could be obtained from
preserved natural systems include measures of nutrient, water, and light avail-
ability, assessment of natural disturbance regimes/environmental heterogeneity,
and identification of factors associated with crucial population processes such as
recruitment.

Focus on the Most Promising Restoration Sites

If data are available from an intact natural system, then promising restoration sites
would ideally be identified based on matching resource availabilities and conditions
(Critchley et al. 2002). Depending on the system of interest, key resources that
maximize native:invader performance ratios will differ, but an obvious strategy
for reducing invasive species problems is to avoid restoration sites with unusually
high resource availability. For example, in northern California, a former cultivated
field is likely to be rich in nutrients from past fertilization and have deeper and
richer soil than a sloping, rocky site that has not been cultivated (Stromberg &
Griffin 1996). Restoration of the former old field site with native perennial bunch
grasses is likely to require substantially more effort and long-term maintenance
because of more severe invasive plant problems (Stromberg & Griffin 1996).

In other cases, small differences in rainfall between potential restoration sites
may be an important consideration. In the Hawaiian Islands, the native grassHet-
eropogon contortusformerly inhabited large portions of low elevation leeward
sides of islands, but in recent years it has nearly disappeared, largely replaced by
African grasses likePennisetum setaceum(Daehler & Carino 1998). Under most
conditions, invasivePennisetumoutcompetesHeteropogon(Carino & Daehler
2002); however, under very dry, nutrient poor conditions,Heteropogonperforms
substantially better than the invader (Goergen & Daehler 2002). It is these ex-
tremely dry and rocky (poor soil) sites that are the focus of currentHeteropogon
restoration efforts. Although alien grass seedlings are occasionally observed at
these sites, they rarely survive owing to inadequate water (C. Daehler, unpublished
data). In cases where the native vegetation targeted for restoration is adapted to
specific environmental stresses (e.g., halophytes), even a small decrease in environ-
mental stress (salinity) can lead to large increases in the performance of invaders
(Mesleard et al. 1993). In such cases, choosing a site with more stressful condi-
tions is likely to minimize invasive plant problems; for halophytic vegetation, salt
additions may even be useful means of controlling invaders (Kuhn & Zedler 1997).
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Actively Manage Resource Availability and
Disturbance—Nutrient Reductions

Reductions in available nitrogen can potentially be achieved either by reducing an-
thropogenic inputs or by adding a carbon supplement to the soil, which can increase
microbial nitrogen uptake (McLendon & Redente 1992, Paschke et al. 2000, Torok
et al. 2000). By experimentally manipulating nitrogen inputs to wetlands with con-
trolled hydrology, Green & Galatowitsch (2002) found that increased nitrogen in-
puts favored dominance of invasive reed canary grass (Phalaris arundinacea) over
the native plant community. They concluded that reducing nitrate loads to wetland
reserves is essential for minimizing declines in native community diversity.

In other systems, such as abandoned agricultural fields, reductions in available
nitrogen to natural levels could take decades even without further anthropogenic
inputs (Barton et al. 1999, Maron & Jeffries 1999). One strategy for rapidly re-
ducing soil nutrients after anthropogenic disturbance is to remove topsoil. In an
effort to restore an abandoned agricultural field to a native fen meadow, Tallowin
& Smith (2001) found that removing 15–20 cm of top soil was the most effective
strategy. Not only did the lower soil layer contain 85% less available phosphorus
and lower nitrogen, it also had a higher calcium content, similar to that of soils in
natural fen meadows (Tallowin & Smith 2001).

As a less extreme method of reducing nutrients, available soil nitrogen can be
reduced by adding sawdust or sucrose to the soil. Paschke et al. (2000) used sucrose
additions to reduce available soil nitrogen on abandoned crop land in Colorado.
Over four years, plots that had been dominated by invasiveBromus tectorumwere
converted to a community that closely resembled the natural late seral shortgrass
steppe vegetation. There was also less overall recruitment by a variety of weedy
species in the reduced-nitrogen plots, even in wet years (Paschke et al. 2000).
Interestingly, Evans et al. (2001) found that fires promoted byBromus tectorum
decrease nitrogen in the system through volatilization. Over the long run, this
change could promote a shift away from dominance byBromusback toward a late
seral native community. Zink & Allen (1998) found that available nitrogen was
reduced after adding organic mulch to a restoration site, and they suggested that this
reduction gave native California sagebrush (Artemisia californica) a competitive
edge over exotic annuals. Likewise, Alpert & Maron (2000) observed decreased
biomass of invaders into nitrogen-rich soil patches after the addition of sawdust,
while the sawdust did not reduce the abundance of native species. In contrast,
Morghan & Seastedt (1999) did not observe an increase in dominance by natives
following addition of sucrose and sawdust to a high elevation Colorado grassland.
In that study, the treated plots were small in size (1.5× 3 m), and these plots may
have been swamped by alien seeds originating from outside the plots, allowing the
aliens to remain abundant (Morghan & Seastedt 1999). In a mixed prairie grassland,
plots receiving sawdust had higher bare ground, but native species responded most
strongly to tilling, which presumably created more neighbor-free establishment
sites for natives (Wilson & Gerry 1995). The latter two examples point out that
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additional factors besides nutrient reduction may affect the relative success of
natives and invaders.

Other nutrients besides nitrogen could also be profitably manipulated in specific
circumstances. For example, the common dandelion,Taraxicum officinale, seems
to be an unusually poor competitor for potassium, suggesting that simple soil ma-
nipulations could be used to control this weed (Tilman et al. 1999). Increases in
phosphorus associated with soil disturbance have also been suggested to promote
alien invasion in some grasslands (Hobbs & Huenneke 1992), and some specific
methods have been proposed for reducing soil phosphorus (Gough & Marrs 1990).
Although most nutrient reduction studies to date have involved monitoring herba-
ceous species in grasslands, the reviewed performance comparisons of native and
invasive plants suggest that nutrient reductions would also be beneficial for restora-
tions involving native woody plants. Soil pollution with anthropogenic nitrates is
likely to increase as the human population grows to demand higher production
agricultural systems (Kawashima et al. 1997, Van Der Voet et al. 1996). Identi-
fying long-term strategies for keeping excess nitrogen and other nutrients out of
specific natural or restored native systems will be crucial for maintaining these
systems over the long term (Bobbink & Roelofs 1995).

Other resources like light and water could be manipulated locally to promote
native species over invasives, but these manipulations may be costly or imprac-
tical on a large scale. At the very least, if excesses of certain resources such as
water occur at discrete times (e.g., following an unusually heavy rain), then re-
connaissance efforts aimed at preventing the establishment and spread of invaders
could be focused on these specific times. For example, Burgess et al. (1991) noted
that introduced buffel grass (Cenchrus ciliaris) failed to spread significantly for
many years; however, during two unusually wet years many seedlings became
established and later grew to form dense stands. Other studies have also identified
the role of brief, discrete periods of increased resource availability in facilitating
invasions (Davis & Pelsor 2001).

Manipulate Disturbance

One strategy for promoting natives is to attempt to mimic natural disturbance
regimes. For example, restoration of the historic flood regime along rivers in the
southwestern United States would probably favor the re-establishment of native
vegetation over the currently established invasiveTamarix ramosissima(Sher et al.
2000). A similar situation seems to occur with invasiveElaeagnus angstifoliaalong
river banks in the western United States; restoration of the historic flood regime
would probably favor re-establishment of natives (Shafroth et al. 1995). Maintain-
ing the historic fire regime often favors the growth of native species over invaders
(Schultz & Crone 1998, Tveten & Fonda 1999). For example, in California grass-
lands, warm season burning seems to favor native plants over invasive annual
grasses (Meyer & Schiffman 1999). Restoration of historic grazing regimes can
also help promote native species diversity (Collins et al. 1998). In other cases, dis-
turbances that do not necessarily match the historic disturbance regime may still
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favor natives over invaders. For example, early spring mowing alone converted a
grassland dominated by an invasive perennial grass (Arrhenatherum elatius) to a
native perennial grassland (Wilson & Clark 2001). The growth pattern and phe-
nology differed between the invader and natives such that mowing in early spring
differentially removed biomass and developing inflorescences of the invader, re-
sulting in increased flowering and growth of the native perennial grass (Wilson
& Clark 2001). This example again illustrates how comparative demographic
studies of invaders and co-occurring natives could be used to identify restoration
strategies.

Further Challenges

Although particular disturbance regimes may tend to favor natives over invaders,
maintaining primarily native communities may become increasingly difficult as
the pool of introduced species located near a remnant native community increases
(Smith & Knapp 2001b). The larger the pool of introduced species nearby, the
greater the chance that at least some aliens will be able to tolerate the historic dis-
turbance regime. More generally, the larger the species pool of potential invaders,
the greater the chance that some aliens will possess traits that contradict statistical
trends among invaders. For example, in a seed addition experiment testing the ef-
fects of disturbance and nutrient addition on invasion, Buckland et al. (2001) found
that most successful invaders matched the predicted pattern—they became estab-
lished and abundant in the physical disturbance and/or nutrient addition treatments.
But one invasive grass,Brachypodium pinnatum, was most successful in the low
fertility plots (Buckland et al. 2001). Controlling such exceptional species might
require more direct, focused attacks, although the example ofB. pinnatumis not
so clear because in similar grasslands, Bobbink & Willems (1987) concluded that
higher nutrients (especially nitrogen) were important in facilitatingB. pinnatum
invasion, matching the predicted general pattern for invaders.

Another problem that becomes apparent as the pool of invaders grows and the
size of native habitats decreases is the proportionally greater influx of alien plant
seeds into smaller patches of native vegetation (e.g., D’Antonio et al. 2001). A
“seed swamping” effect could increase the net establishment of invaders, even if
they are unable to develop self-sustaining populations within native habitats. This
effect may be partly countered by establishing dense native vegetation around the
edges of remnant native habitats (Cadenasso & Pickett 2001).

Perhaps the greatest long-term challenge to maintaining native communities is
global climate change associated with urbanization and anthropogenic greenhouse
gasses (Walther et al. 2002, White et al. 2002). Increases in global temperature
allow warm-climate species to succeed at higher latitudes and elevations while also
potentially decreasing the performance of certain native species. Such changes have
already been clearly documented (Walther et al. 2002). If anthropogenic climate
changes turn out to be large enough to affect vegetation patterns on a global
scale, then conservation biologists may need to adopt entirely new objectives and
strategies for conserving native biodiversity.
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SYNTHESIS

Many conceptual and mathematical models have suggested that increases in re-
source availability (including space, created by physical disturbance) can increase
community susceptibility to invasion (Davis et al. 2000, Fox & Fox 1986, Hobbs
1989, Shea & Chesson 2002, Sher & Hyatt 1999, Tilman 1999). Overall, these
models assume that the free resources provide invaders with an opportunity to enter
an established community, perhaps by reducing the intensity of competition for a
limiting resource (Davis & Pelsor 2001). This idea has been generally supported
by studies that manipulate resources (Brooks 1999, Duggin & Gentle 1998, Li &
Norland 2001, Weiss 1999, White et al. 1997). However, the performance compar-
isons reviewed here suggest an additional factor that can help explain these empir-
ical results: the relative performance of invaders versus native species may shift
under higher resource conditions. Such shifts in relative performance may then al-
low invaders to dominate over natives as long as resource availability remains high
(increased light, nutrients, or water, usually associated with anthropogenic distur-
bance). Because resource availability is unlikely to be uniform in any given habitat,
patches of natives may be expected to persist in lower resource areas (e.g., on lower
quality soil patches, under marginal growing conditions). Theoretically, a return to
original (or predisturbance) resource levels would again favor native species over
most invaders, but several factors may prevent their re-establishment, including

Figure 4 Conceptual model predicting relative performance of native species ver-
sus most invaders. The checkerboard region represents possible unnatural disturbance
regimes (must be discovered) that might favor the native if resource availability is not
extraordinarily high.
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inadequate seed input by natives, a priority effect by established invaders, and over-
whelming seed inputs by invaders growing in surrounding areas. Furthermore, if
invaders are long-lived, then they could potentially prevent significant recruitment
of native species for decades without additional intervention to remove the invaders.

Specific disturbance regimes can also favor natives over invaders (Figure 4).
In most cases, the natural disturbance regime seems to favor natives (Alpert et al.
2000, Hobbs & Huenneke 1992, Mueller-Dombois & Loope 1990), but other dis-
turbance regimes may also favor natives over specific invaders (Figure 4). Life
history and demographic comparisons of co-occurring native and invasive species
could aid in identifying artificial disturbance regimes that decrease the performance
of invaders relative to that of natives. Manipulation of disturbance, nutrient and hy-
drological regimes can be considered within the general framework of “ecosystem
management” (Christensen et al. 1996, Grumbine 1994), although these strategies
for attaining “ecological control” of invaders may also be effective on local scales
that do not necessarily extend across an entire ecosystem.

For any given habitat, there are probably a small number of “super invaders”
capable of outperforming most co-occurring natives even at natural resource lev-
els and in the presence of natural disturbance regimes. These invaders will require
special attention. However, the ability of most invaders to outperform co-occurring
natives appears to be context-dependent. Most environments can probably be man-
aged to favor native species by altering resource levels and disturbance regimes
so that native species performance is maximized, relative to that of most invaders.
This form of “ecological control” is unlikely to eliminate all troublesome invaders
from habitats where they already occur; rather, some invaders would probably
coexist with natives at lower (acceptable) densities. For most habitats, we have
only cursory knowledge, at best, of how environmental manipulations can be used
to reduce invasive plant problems and simultaneously to promote natives. The in-
creasing integration of well-planned environmental manipulations into restoration
projects promises to provide new insights into managing invasive species problems.
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Pyšek P, Prach K, Smilauer P. 1995. Relating
invasion success to plant traits: an analysis
of the Czech alien flora. InPlant Invasions,
General Aspects and Special Problems,ed. P
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